Publications

  • All全て
  • Journalジャーナル
  • Intellectual property知財

Journal

2023
  1. An integrated approach of NMR experiments and MD simulations visualizes structural dynamics of a cyclic multi-domain protein. Sorada T., Walinda E., Shirakawa M., Sugase K., Morimoto D. “An integrated approach of NMR experiments and MD simulations visualizes structural dynamics of a cyclic multi-domain protein.” Protein Sci. in press.
  2. Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity.
    Walinda E., Sugase K., Ishii N., Shirakawa M., Iwai K., Morimoto D. “Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity.” J. Biol. Chem. in press
  3. Conformational fluctuations and induced orientation of a protein, its solvation shell, and bulk water in weak non-unfolding external electric fields. Shuto Y., Walinda E., Morimoto D., Sugase K. “Conformational fluctuations and induced orientation of a protein, its solvation shell, and bulk water in weak non-unfolding external electric fields.” J. Phys. Chem. B in press.
  4. H2A ubiquitination alters H3-tail dynamics on linker-DNA to enhance H3K27 methylation. Ohtomo H., Ito S., McKenzie NJ., Uckelmann M., Wakamori M., Ehara H., Furukawa A., Tsunaka Y., Shibata M., Sekine S., Umehara T., Davidovich C., Koseki H., Nishimura Y. “H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation.” J. Mol. Biol. 435(4), 167936 (2023).
  5. 第3節 タンパク質を多角的に捉えるNMR測定法 森本大智, 菅瀬謙治 “第1章 第3節 タンパク質を多角的に捉えるNMR測定法.” 「タンパク質の構造解析手法とIn silicoスクリーニングへの応用事例」 (技術情報協会), 18–27 (2023).
2022
  1. Rheo-NMR spectroscopy for cryogenic probe-equipped NMR instruments to monitor protein aggregation.

    Morimoto D., Walinda E., Yamamoto A., Scheler U., Sugase K. “Rheo-NMR spectroscopy for cryogenic probe-equipped NMR instruments to monitor protein aggregation.” Curr. Protoc. Protein Sci. 2(12), 3617 (2022).

  2. Counter-flow phenomena studied by nuclear magnetic resonance (NMR) velocimetry and flow simulations. Kohn B., Walinda E., Sugase K., Morimoto D., Scheler U. “Counter-flow phenomena studied by nuclear magnetic resonance (NMR) velocimetry and flow simulations.” Phys. Fluids 34(7), 073608 (2022).
  3. Structural insights into methylated DNA recognition by the methyl-CpG binding domain of MBD6 from Arabidopsis thaliana. Mahana Y., Ohki I., Walinda E., Morimoto D., Sugase K., Shirakawa M. “Structural insights into methylated DNA recognition by the methyl-CpG binding domain of MBD6 from Arabidopsis thaliana.ACS Omega 7(4), 3212–3221 (2022).
  4. Histone tail network and modulation in a nucleosome. Tsunaka Y., Furukawa A., Nishimura Y. “Histone tail network and modulation in a nucleosome.” Opin. Struct. Biol. 75, 102436 (2022).
  5. Characteristic H3 N-tail dynamics in the nucleosome core particle, nucleosome, and chromatosome. Furukawa A., Wakamori M., Arimura Y., Ohtomo H., Tsunaka Y., Kurumizaka H., Umehara T., Nishimura Y. “Characteristic H3 N-tail dynamics in the nucleosome core particle, nucleosome, and chromatosome.” iScience 25(3), 103937 (2022).
2021
  1. Rigorous analysis of the interaction between proteins and low water-solubility drugs by qNMR-aided NMR titration experiments. Hirakawa T., Walinda E., Morimoto D., Sugase K. “Rigorous analysis of the interaction between proteins and low water-solubility drugs by qNMR-aided NMR titration experiments.” Phys. Chem. Chem. Phys. 23(38), 21484–21488 (2021).
  2. Expression, solubility monitoring, and purification of the co-folded LUBAC LTM domain by structure-guided tandem folding in autoinducing cultures. Walinda E., Morimoto D., Sorada T., Iwai K., Sugase K. “Expression, solubility monitoring, and purification of the co-folded LUBAC LTM domain by structure-guided tandem folding in autoinducing cultures.” Protein Expr. Purif. 187, 105953 (2021).
  3. Effects of weak non-specific interactions with ATP on proteins. Nishizawa M., Walinda E., Morimoto D., Kohn B., Scheler U., Shirakawa M., Sugase K. “Effects of weak non-specific interactions with ATP on proteins.” J. Am. Chem. Soc. 143(31), 11982–11993 (2021).
  4. Multiple-state monitoring of SOD1 amyloid formation at single-residue resolution by Rheo-NMR spectroscopy. Iwakawa N., Morimoto D., Walinda E., Shirakawa M., Sugase K. “Multiple-state monitoring of SOD1 amyloid formation at single-residue resolution by Rheo-NMR spectroscopy.” J. Am. Chem. Soc. 143(28), 10604–10613 (2021).
  5. Backbone resonance assignments of the A2 domain of mouse von Willebrand factor. Morimoto D., Osugi M., Mahana Y., Walinda E., Shirakawa M., Sugase K. “Backbone resonance assignments of the A2 domain of mouse von Willebrand factor.” Biomol. NMR Assign. 15(2), 427–431 (2021).
  6. Glycyrrhizin derivatives suppress cancer chemoresistance by inhibiting progesterone receptor membrane component 1. Kabe Y., Koike I., Yamamoto T., Hirai M., Kanai A., Furuhata R., Tsugawa H., Harada E., Sugase K., Hanadate K., Yoshikawa N., Hayashi H., Noda M., Uchiyama S., Yamazaki H., Tanaka H., Kobayashi T., Handa H., Suematsu M. “Glycyrrhizin derivatives suppress cancer chemoresistance by inhibiting progesterone receptor membrane component 1.” Cancers 13(13), 3265 (2021).
  7. Molecular recognition and deubiquitination of cyclic K48-linked ubiquitin chains by OTUB1. Sorada T., Morimoto D., Walinda E., Sugase K. “Molecular recognition and deubiquitination of cyclic K48-linked ubiquitin chains by OTUB1.” Biochem. Biophys. Res. Commun. 562, 94–99 (2021).
  8. Transient diffusive interactions with a protein crowder affect aggregation processes of superoxide dismutase 1 β-barrel. Iwakawa N., Morimoto D., Walinda E., Leeb S., Shirakawa M., Danielsson J., Sugase K. “Transient diffusive interactions with a protein crowder affect aggregation processes of superoxide dismutase 1 β-barrel.” J. Phys. Chem. B 125(10), 2521–2532 (2021).
  9. Structural dynamic heterogeneity of polyubiquitin subunits affects phosphorylation susceptibility. Morimoto D., Walinda E., Takashima S., Nishizawa M., Iwai K., Shirakawa M., Sugase K. “Structural dynamic heterogeneity of polyubiquitin subunits affects phosphorylation susceptibility.” Biochemistry 60(8), 573–583 (2021).
  10. Structural dynamics of double-stranded DNA with epigenome modification. Furukawa A., Walinda E., Arita K., Sugase K. “Structural dynamics of double-stranded DNA with epigenome modification.” Nucleic Acids Res. 49(2), 1152–1162 (2021).
  11. 第6章 第2節 Rheo-NMRによる生体高分子の動的構造解析. 森本大智, 菅瀬謙治 “第6章 第2節 Rheo-NMRによる生体高分子の動的構造解析.” 「NMRによる有機材料分析とその試料前処理、データ解釈」 (技術情報協会), 518–525 (2021).
  12. 溶液NMR法を用いた核酸-タンパク質の動的な相互作用の機能解明 古川亜矢子 “溶液NMR法を用いた核酸-タンパク質の動的な相互作用の機能解明”, 日本核磁気共鳴学会機関誌 11, 108–115 (2021).
2020
  1. Quantitative monitoring of ubiquitination/deubiquitination reaction cycles by 18O-incorporation. Tanaka Y., Morimoto D., Walinda E., Sugase K., Shirakawa M. “Quantitative monitoring of ubiquitination/deubiquitination reaction cycles by 18O-incorporation.” Biochem. Biophys. Res. Commun. 529(2), 418–424 (2020).
  2. Pinpoint analysis of a protein in slow exchange using F1F2-selective ZZ-exchange spectroscopy: assignment and kinetic analysis. Nishizawa M., Walinda E., Morimoto D., Sugase K. “Pinpoint analysis of a protein in slow exchange using F1F2-selective ZZ-exchange spectroscopy: assignment and kinetic analysis.” J. Biomol. NMR 74(4-5), 205–211 (2020).
  3. Visualizing protein motion in Couette flow by all-atom molecular dynamics. Walinda E., Morimoto D., Shirakawa M., Scheler U., Sugase K. “Visualizing protein motion in Couette flow by all-atom molecular dynamics.” Biochim. Biophys. Acta. Gen. Subj. 1864(2), 129383 (2020).
  4. Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome. Furukawa A., Wakamori M., Arimura Y., Ohtomo H., Tsunaka Y., Kurumizaka H., Umehara T., Nishimura Y. “Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome.” Proc. Natl. Acad. Sci. USA 117(33), 19661–19663 (2020).
2019
  1. Conformational exchange in the potassium channel blocker ShK. Iwakawa N., Baxter N.J., Wai D.C.C., Fowler N.J., Morales R.A.V., Sugase K., Norton R.S., Williamson M.P. “Conformational exchange in the potassium channel blocker ShK.” Sci. Rep. 9(1), 19307 (2019).
  2. Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Akiba H., Tamura H., Kiyoshi M., Yanaka S., Sugase K., Caaveiro J.M.M., Tsumoto K., “Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody.” Sci. Rep. 9(1), 15481 (2019).
  3. NMR resonance assignments of the NZF domain of mouse HOIL-1L free and bound to linear di-ubiquitin. Ishii N., Walinda E., Iwakawa N., Morimoto D., Iwai K., Sugase K., Shirakawa M. “NMR resonance assignments of the NZF domain of mouse HOIL-1L free and bound to linear di-ubiquitin.” Biomol. NMR Assign. 13(1), 149–153 (2019).
  4. Backbone and side-chain resonance assignments of the methyl-CpG-binding domain of MBD6 from Arabidopsis thaliana. Iwakawa N., Mahana Y., Ono A., Ohki I., Walinda E., Morimoto D., Sugase K., Shirakawa M. “Backbone and side-chain resonance assignments of the methyl-CpG-binding domain of MBD6 from Arabidopsis thaliana.” Biomol. NMR Assign. 13(1), 59–62 (2019).
  5. 生体分子レオロジーNMRの開発と応用. 森本大智, 菅瀬謙治 “生体分子レオロジーNMRの開発と応用.” 日本核磁気共鳴学会機関誌 10, 64–68 (2019).
  6. 高感度Rheo-NMRによるアミロイド線維化過程のその場観察. 森本大智, 菅瀬謙治 “高感度Rheo-NMRによるアミロイド線維化過程のその場観察.” 細胞 51, 608–612 (2019).
  7. Identification of a binding protein for sesamin and characterization of its roles in plant growth. Tera M., Koyama T., Murata J., Furukawa A., Mori S., Azuma T., Watanabe T., Hori K., Okazawa A., Kabe Y., Suematsu M., Satake H., Ono E., Horikawa M. “Identification of a binding protein for sesamin and characterization of its roles in plant growth.” Sci. Rep. 9(1), 8631 (2019).
2018
  1. Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR. Walinda E., Morimoto D., Sugase K. “Resolving biomolecular motion and interactions by R2 and R relaxation dispersion NMR.” Methods 148, 28–38 (2018).
  2. Overview of relaxation dispersion NMR spectroscopy to study protein dynamics and protein-ligand interactions. Walinda E., Sugase K. “Overview of relaxation dispersion NMR spectroscopy to study protein dynamics and protein-ligand interactions.” Curr. Protoc. Protein Sci. 92(1), e57 (2018).
  3. Hydrogen-deuterium exchange profiles of polyubiquitin fibrils. Morimoto D., Nishizawa R., Walinda E., Takashima S., Sugase K.*, Shirakawa M.* “Hydrogen-deuterium exchange profiles of polyubiquitin Fibrils.” Polymers 10(3), 240 (2018).
  4. Isolation and characterization of a minimal building block of polyubiquitin fibrils. Morimoto D., Walinda E., Shinke M., Sugase K., Shirakawa M. “Isolation and characterization of a minimal building block of polyubiquitin fibrils.” Sci. Rep. 8(1), 2711 (2018).
  5. Chapter 7 Elucidating functional dynamics by R1ρ and R2 relaxation dispersion NMR spectroscopy. Walinda E, Sugase K. “Chapter 7 Elucidating functional dynamics by R1ρ and R2 relaxation dispersion NMR spectroscopy.” 「Experimental approaches of NMR spectroscopy –Methodology and application to life science and materials science–」 (Springer), 197–225, (2018).
2017
  1. Real-time observation of the interaction between thioflavin T and an amyloid protein by using high-sensitivity Rheo-NMR. Iwakawa N., Morimoto D., Walinda E., Kawata Y., Shirakawa M., Sugase K. “Real-time observation of the interaction between thioflavin T and an amyloid protein by using high-sensitivity Rheo-NMR.” Int. J. Mol. Sci. 18(11), 2271 (2017).
  2. Elucidation of potential sites for antibody engineering by fluctuation editing. Yanaka S., Moriwaki Y., Tsumoto K., Sugase K. “Elucidation of potential sites for antibody engineering by fluctuation editing.” Sci. Rep. 7(1), 9597 (2017).
  3. High-sensitivity Rheo-NMR spectroscopy for protein studies. Morimoto D., Walinda E., Iwakawa N., Nishizawa M., Kawata Y., Yamamoto A., Shirakawa M., Scheler U., Sugase K. “High-sensitivity Rheo-NMR spectroscopy for protein studies.” Anal. Chem. 89(14), 7286–7290 (2017).
  4. Exploration of the conformational dynamics of MHC molecules. Yanaka S., Sugase K. “Exploration of the conformational dynamics of MHC molecules.” Front. Immunol. 8, 632 (2017).
  5. Biological and physicochemical functions of ubiquitylation revealed by synthetic chemistry approaches. Morimoto D., Walinda E., Sugase K., Shirakawa M. “Biological and physicochemical functions of ubiquitylation revealed by synthetic chemistry approaches.” Int. J. Mol. Sci. 18(6), E1145 (2017).
  6. F1F2-selective NMR spectroscopy. Walinda E., Morimoto D., Shirakawa M., Sugase K.F1F2-selective NMR spectroscopy.” J. Biomol. NMR 68(1), 41–52 (2017).
  7. Practical considerations for investigation of protein conformational dynamics by 15N R1ρ relaxation dispersion. Walinda E., Morimoto D., Shirakawa M., Sugase K. “Practical considerations for investigation of protein conformational dynamics by 15N R relaxation dispersion.” J. Biomol. NMR 67(3), 201–209 (2017).
  8. Backbone resonance assignments of monomeric SOD1 in dilute and crowded environments. Iwakawa N., Morimoto D., Walinda E., Sugase K., Shirakawa M. “Backbone resonance assignments of monomeric SOD1 in dilute and crowded environments.” Biomol. NMR Assign. 11(1), 81–84 (2017).
2016
  1. Ubiquitylation directly induces fold destabilization of proteins. Morimoto D., Walinda E., Fukada H., Sugase K., Shirakawa M. “Ubiquitylation directly induces fold destabilization of proteins.” Sci. Rep. 6, 39453 (2016).
  2. The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)-phytosiderophore transporters. Harada E., Sugase K., Namba K., Murata Y. “The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)-phytosiderophore transporters.” FEBS Lett. 590(24), 4617–4627 (2016).
  3. Dynamics of the extended string-like interaction of TFIIE with the p62 subunit of TFIIH. Okuda M., Higo J., Komatsu T., Konuma T., Sugase K., Nishimura Y. “Dynamics of the extended string-like interaction of TFIIE with the p62 subunit of TFIIH.” Biophys. J. 111(5), 950–962 (2016).
  4. Quantitative analysis of protein-ligand interactions by NMR. Furukawa A., Konuma T., Yanaka S., Sugase K. “Quantitative analysis of protein-ligand interactions by NMR.” Prog. Nucl. Magn. Reson. Spectrosc. 96, 47–57 (2016).
  5. Dual function of phosphoubiquitin in E3 activation of parkin. Walinda E., Morimoto D., Sugase K., Shirakawa M. “Dual function of phosphoubiquitin in E3 activation of parkin.” J. Biol. Chem. 291(32), 16879–16891 (2016).
  6. Efficient identification and analysis of chemical exchange in biomolecules by R1ρ relaxation dispersion with Amaterasu. Walinda E., Morimoto D., Nishizawa M., Shirakawa M., Sugase K. “Efficient identification and analysis of chemical exchange in biomolecules by R relaxation dispersion with Amaterasu.” Bioinformatics 32(16), 2539–2541 (2016).
  7. Use of glass capillaries to suppress thermal convection in NMR tubes in diffusion measurements. Iwashita T., Konuma T., Harada E., Mori S., Sugase K. “Use of glass capillaries to suppress thermal convection in NMR tubes in diffusion measurements.” Magn. Reson. Chem. 54(9), 729–733 (2016).
  8. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Kabe Y., Nakane T., Koike I., Yamamoto T., Sugiura Y., Harada E., Sugase K., Shimamura T., Ohmura M., Muraoka K., Yamamoto A., Uchida T., Iwata S., Yamaguchi Y., Krayukhina E., Noda M., Handa H., Ishimori K., Uchiyama S., Kobayashi T., Suematsu M. “Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.” Nat. Commun. 7, 11030 (2016).
2015
  1. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy. Konuma T., Harada E., Sugase K. “Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.” J. Biomol. NMR 63(4), 367–373 (2015).
  2. Dynamic changes in CCAN organization through CENP-C during cell-cycle progression. Nagpal H., Hori T., Furukawa A., Sugase K., Osakabe A., Kurumizaka H., Fukagawa T. “Dynamic changes in CCAN organization through CENP-C during cell-cycle progression.” Mol. Biol. Cell 26(21), 3768–3776 (2015).
  3. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Arai M., Sugase K., Dyson H.J., Wright P.E. “Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.” Proc. Natl. Acad. Sci. USA 112(31), 9614–9619 (2015).
  4. Revealing the peptide presenting process of human leukocyte antigen through the analysis of fluctuation. Yanaka S., Ueno T., Tsumoto K., Sugase K. “Revealing the peptide presenting process of human leukocyte antigen through the analysis of fluctuation.” Biophys. 11, 103–106 (2015).
  5. Distal regulation of heme binding of heme oxygenase-1 mediated by conformational fluctuations. Harada E., Sugishima M., Harada J., Fukuyama K., Sugase K. “Distal regulation of heme binding of heme oxygenase-1 mediated by conformational fluctuations.” Biochemistry 54(2), 340–348 (2015).
  6. Backbone assignments of the apo and Zn(II) protoporphyrin IX-bound states of the soluble form of rat heme oxygenase-1. Harada E., Sugishima M., Harada J., Noguchi M., Fukuyama K., Sugase K. “Backbone assignments of the apo and Zn(II) protoporphyrin IX-bound states of the soluble form of rat heme oxygenase-1.” Biomol. NMR Assign. 9(1), 197–200 (2015).
  7. NMR緩和分散法による動的構造解析. 菅瀬謙治 “NMR緩和分散法による動的構造解析.” 分光研究 64, 296–307 (2015).
2014
  1. Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. Yanaka S., Ueno T., Shi Y., Qi J., Gao G.F., Tsumoto K., Sugase K. “Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex.” J. Biol. Chem. 289(35), 24680–24690 (2014).
  2. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning. Nomura K., Harada E., Sugase K., Shimamoto K. “Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.” J. Phys. Chem. B 118(9), 2405–2413 (2014).
  3. Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. Walinda E., Morimoto D., Sugase K., Konuma T., Tochio H., Shirakawa M. “Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin.” J. Biol. Chem. 289(20), 13890–13902 (2014).
  4. Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy. Furukawa A., Sugase K., Morishita R., Nagata T., Kodaki T., Takaori-Kondo A., Ryo A., Katahira M. “Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy.” Angew. Chem. Int. Ed. 53(9), 2349–2352 (2014).
2013
  1. Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE. Sugase K., Konuma T., Lansing J.C., Wright P.E. “Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE.” J. Biomol. NMR 56(3), 275–283 (2013).
  2. Solution structure of the Q41N variant of ubiquitin as a model for the alternatively folded N2 state of ubiquitin. Kitazawa S., Kameda T., Yagi-Utsumi M., Sugase K., Baxter N.J., Kato K., Williamson M.P., Kitahara R. “Solution structure of the Q41N variant of ubiquitin as a model for the alternatively folded N2 state of ubiquitin.” Biochemistry 52(11), 1874–1885 (2013).
2012
  1. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques. Yanagi K., Sakurai K., Yoshimura Y., Konuma T., Lee Y.H., Sugase K., Ikegami T., Naiki H., Goto Y. “The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.” J. Mol. Biol. 422(3), 390–402 (2012).
  2. 実践relaxation dispersion法. 菅瀬謙治 “実践relaxation dispersion法.” 日本核磁気共鳴学会機関誌 3, 82–85 (2012).
  3. NMR study of xenotropic murine leukemia virus-related virus protease in a complex with amprenavir. Furukawa A., Okamura H., Morishita R., Matsunaga S., Kobayashi N., Ikegami T., Kodaki T., Takaori-Kondo A., Ryo A., Nagata T., and Katahira M. “NMR study of xenotropic murine leukemia virus-related virus protease in a complex with amprenavir.” Biochem. Biophys. Res. Commun. 425(2), 284–289 (2012).
  4. Syntheses racemic and diastereomeric mixture of 3,7,11,15-tetramethylhentriacontane and 4,8,12,16-tetramethylalkanes of the tsetse fly, Glossina brevipalpis. Shibata C., Furukawa A., Mori K. “Syntheses racemic and diastereomeric mixture of 3,7,11,15-tetramethylhentriacontane and 4,8,12,16-tetramethylalkanes of the tsetse fly, Glossina brevipalpis.” Biosci. Biotechnol. Biochem. 66(3), 582–587 (2002).
2011
  1. Boosting protein dynamics studies using quantitative nonuniform sampling NMR spectroscopy. Matsuki Y., Konuma T., Fujiwara T., Sugase K. “Boosting protein dynamics studies using quantitative nonuniform sampling NMR spectroscopy.” J. Phys. Chem. B 115(46), 13740–13745 (2011).
  2. Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy Sugase K. “Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.” J. Biomol. NMR 50(3), 219–227 (2011).
  3. Lipopolysaccharide induces raft domain expansion in membrane composed of a phospholipid-cholesterol-sphingomyelin ternary system. Nomura K., Maeda M., Sugase K., Kusumoto S. “Lipopolysaccharide induces raft domain expansion in membrane composed of a phospholipid-cholesterol-sphingomyelin ternary system.” Innate Immun. 17(3), 256–268 (2011).
  4. Heat shock protein 70 inhibits HIV-1 Vif-mediated ubiquitination and degradation of APOBEC3G. Sugiyama R., Nishitsuji H., Furukawa A., Katahira M., Habu Y., Takeuchi H., Ryo A., Takaku H. “Heat shock protein 70 inhibits HIV-1 Vif-mediated ubiquitination and degradation of APOBEC3G.” Biol. Chem. 286(12), 10051–10057 (2011).
2009
  1. Calcitonin in a protochordate, Ciona intestinalis – the prototype of the vertebrate calcitonin/calcitonin gene-related peptide superfamily. Sekiguchi T., Suzuki N., Fujiwara N., Aoyama M., Kawada T., Sugase K., Murata Y., Sasayama Y., Ogasawara M., Satake H. “Calcitonin in a protochordate, Ciona intestinalis – the prototype of the vertebrate calcitonin/calcitonin gene-related peptide superfamily.” FEBS J. 276(16), 4437–4447 (2009).
  2. Mapping protein folding landscapes by NMR relaxation. Wright P.E., Felitsky D.J., Sugase K., Dyson H.J. “Mapping protein folding landscapes by NMR relaxation.” 「Water and Biomolecules」 (Springer), 1–12 (2009).
  3. Structure, interaction, and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. Furukawa A., Nagata T., Matsugami A., Habu Y., Sugiyama R., Hayashi F., Yokoyama S., Takaku H., Katahira M. “Structure, interaction, and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.” EMBO J. 28(4), 440–451 (2009).
2008
  1. Specific transporter for iron(III)-phytosiderophore complex involved in iron uptake by barley roots. Murata Y., Harada E., Sugase K., Namba K., Horikawa M., Ma J.F., Yamaji N., Ueno D., Nomoto K., Iwashita T., Kusumoto S. “Specific transporter for iron(III)-phytosiderophore complex involved in iron uptake by barley roots.” Pure Appl. Chem. 80(12), 2689–2697 (2008).
  2. Overexpression of post-translationally modified peptides in Escherichia coli by co-expression with modifying enzymes. Sugase K., Landes M.A., Wright P.E., Martinez-Yamout M. “Overexpression of post-translationally modified peptides in Escherichia coli by co-expression with modifying enzymes.” Protein Expr. Purif. 57(2), 108–115 (2008).
  3. 低存在の状態を解析する新しいNMR技術. 菅瀬謙治 “低存在の状態を解析する新しいNMR技術.” 生物物理 48, 279–281 (2008).
  4. Relaxation Dispersion法の生化学への応用. 菅瀬謙治 “Relaxation Dispersion法の生化学への応用.” 生化学 80(8), 754–758 (2008).
  5. Elucidation of the mode of interaction in the UP1-telomerase RNA-telomeric DNA ternary complex which serves to recruit telomerase to telomeric DNA and to enhance the telomerase activity. Nagata T., Takada Y., Ono A., Nagata K., Konishi Y., Nukina T., Ono M., Matsugami A., Furukawa A., Fujimoto N., Fukuda H., Nakagama H., Katahira M. “Elucidation of the mode of interaction in the UP1-telomerase RNA-telomeric DNA ternary complex which serves to recruit telomerase to telomeric DNA and to enhance the telomerase activity.” Nucleic Acids Res. 36(21), 6816–6824 (2008).
2007
  1. Tailoring relaxation dispersion experiments for fast-associating protein complexes. Sugase K., Lansing J.C., Dyson H.J., Wright P.E. “Tailoring relaxation dispersion experiments for fast-associating protein complexes.” J. Am. Chem. Soc. 129(44), 13406–13407 (2007).
  2. Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley. Harada E., Sugase K., Namba K., Iwashita T., Murata Y. “Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley.” FEBS Lett. 581(22), 4298–4302 (2007).
  3. Solution structure of agelenin, an insecticidal peptide isolated from the spider Agelena opulenta, and its structural similarities to insect-specific calcium channel inhibitors. Yamaji N., Sugase K., Nakajima T., Miki T., Wakamori M., Mori Y., Iwashita T. “Solution structure of agelenin, an insecticidal peptide isolated from the spider Agelena opulenta, and its structural similarities to insect-specific calcium channel inhibitors.” FEBS Lett. 581(20), 3789–3794 (2007).
  4. Mechanism of coupled folding and binding of an intrinsically disordered protein. Sugase K., Dyson H.J., Wright P.E. “Mechanism of coupled folding and binding of an intrinsically disordered protein.” Nature 447(7147), 1021–1025 (2007).
  5. 天然変性状態と遭遇複合体. 菅瀬謙治 “天然変性状態と遭遇複合体.” 蛋白質核酸酵素 52(9), 945–951 (2007).
  6. レスベラトロールがメタボリックシンドロームを改善する? 菅瀬謙治 “レスベラトロールがメタボリックシンドロームを改善する?” ファルマシア 43, 721–722 (2007).
  7. Mutational analyses of a single-stranded telomeric DNA binding domain of fission yeast Pot1: Conflict with X-ray crystallographic structure. Torigoe H., Dohmae N., Hanaoka F., Furukawa A., “Mutational analyses of a single-stranded telomeric DNA binding domain of fission yeast Pot1: Conflict with X-ray crystallographic structure.”, Biotechnol. Biochem., 71(2), 481–490 (2007).
  8. Tetraplex structure of fission yeast telomeric DNA ad unfolding of the tetraplex on the interaction with telomeric DNA binding protein Pot1. Torigoe H., Furukawa A. “Tetraplex structure of fission yeast telomeric DNA ad unfolding of the tetraplex on the interaction with telomeric DNA binding protein Pot1.” Biochem. 141(1), 57–68 (2007).
2004
  1. Solution structure of IsTX. A male scorpion toxin from Opisthacanthus madagascariensis (Ischnuridae). Yamaji N., Dai L., Sugase K., Andriantsiferana M., Nakajima T., Iwashita T. “Solution structure of IsTX. A male scorpion toxin from Opisthacanthus madagascariensis (Ischnuridae).” Eur. J. Biochem. 271(19), 3855–3864 (2004).
  2. Restriction of a peptide turn conformation and conformational analysis of guanidino group by using arginine-proline fused amino acids: application to mini atrial natriuretic peptide on binding to the receptor. Sugase K., Horikawa M., Sugiyama M., Ishiguro M. “Restriction of a peptide turn conformation and conformational analysis of guanidino group by using arginine-proline fused amino acids: application to mini atrial natriuretic peptide on binding to the receptor.” J. Med. Chem. 47(2), 489–492 (2004).
2002
  1. Structure-activity relationships for mini atrial natriuretic peptide by proline-scanning mutagenesis and shortening of peptide backbone. Sugase K., Oyama Y., Kitano K., Akutsu H., Ishiguro M. “Structure-activity relationships for mini atrial natriuretic peptide by proline-scanning mutagenesis and shortening of peptide backbone.” Bioorg. Med. Chem. Lett. 12(9), 1245–1247 (2002).
  2. Designing analogues of mini atrial natriuretic peptide based on structural analysis by NMR and restrained molecular dynamics. Sugase K., Oyama Y., Kitano K., Iwashita T., Fujiwara T., Akutsu H., Ishiguro M. “Designing analogues of mini atrial natriuretic peptide based on structural analysis by NMR and restrained molecular dynamics.” J. Med. Chem. 45(4), 881–887 (2002).
  3. Syntheses of four methyl-branched secondary acetates and a methyl-branched ketone as possible candidates for the female pheromone of the screwworm fly, Cochliomyia hominivorax. Furukawa A., Shibata C., Mori K. “Syntheses of four methyl-branched secondary acetates and a methyl-branched ketone as possible candidates for the female pheromone of the screwworm fly, Cochliomyia hominivorax.Biosci. Biotechnol. Biochem. 66(5), 1164–1116 (2002).
2000
  1. Characterization of a receptor-bound conformation of mini atrial natriuretic peptide. Sugase K., Oyama Y., Kitano K., Iwashita T., Fujiwara T., Akutsu H., Ishiguro M. “Characterization of a receptor-bound conformation of mini atrial natriuretic peptide.” Biochem. Soc. Trans. 28(5), A207 (2000).
1999
  1. Synthesis of the cyclic heptapeptide Substance P antagonist, dihydro-WIN67689 and determination of the stereochemistry of the modified tyrosine moiety. Li Y.Q., Sugase K., Ishiguro M. “Synthesis of the cyclic heptapeptide Substance P antagonist, dihydro-WIN67689 and determination of the stereochemistry of the modified tyrosine moiety.” Tetrahedron Lett. 40(51), 9097–9100 (1999).
1995
  1. 13C-13C and 13C-15N dipolar correlation NMR of uniformly labeled organic solids for the complete assignment of their 13C and 15N signals: an application to adenosine. Fujiwara T., Sugase K., Kainosho M., Ono A., Ono A. (Mei), Akutsu H. “13C-13C and 13C-15N dipolar correlation NMR of uniformly labeled organic solids for the complete assignment of their 13C and 15N signals: an application to adenosine.” J. Am. Chem. Soc. 117(45), 11351–11352 (1995).

Intellectual property

  1. 剪断流を発生させる器具

    菅瀬謙治, 森本大智, 保科好秀, 「剪断流を発生させる器具」, 特許第7255801号

  2. 剪断流を発生させる器具
    菅瀬謙治, 森本大智, 山本昭彦, 保科好秀, 剪断流を発生させる器具, 特願2023-170462